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Figure 1: Workflow of AI-assisted Web Development: Developers use AI coding assistants to produce UI code, which is rendered 
as a web UI and accessed by users with different accessibility needs. We consider the accessibility of the rendered UI as a 
function of the UI code produced and refer to it as “code accessibility”. 

ABSTRACT 
A long-standing challenge in accessible computing has been to get 
developers to produce the accessible UI code necessary for assistive 
technologies to work properly. AI coding assistants (e.g., Github 
Copilot) potentially offer a new opportunity to make UI code more 
accessible automatically, but it is unclear how their use impacts 
code accessibility and what developers need to know in order to use 
them effectively. In this paper, we report on a study where devel-
opers untrained in accessibility were tasked with building web UI 
components with and without an AI coding assistant. Our findings 
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suggest that while current AI coding assistants show potential for 
creating more accessible UIs, they currently require accessibility 
awareness and expertise, limiting their expected impact. 
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1 INTRODUCTION 
A long-standing challenge in accessible computing has been to get 
developers to produce the accessible user interface code necessary 
for assistive technologies to work properly. The 2024 WebAIM study 
of the top million web pages found that the average homepage 
had 56.8 errors, defined as “accessibility barriers having notable 
end-user impact” [41], a number that has remained stubbornly 
high despite the substantial effort put into accessibility standards 
development [5, 6, 11, 28], developer tool integration [4, 21, 38], 
legal requirements [33, 42], and developer advocacy [12, 35]. 

AI coding assistants, such as GitHub Copilot, represent a sig-
nificant breakthrough in programming. The rapid advancement of 
language models has revolutionized the way individuals explore, 
interpret, and edit code. By leveraging the power of large language 
models (LLMs), the programming assistants provide code sugges-
tions and automate routine programming tasks, saving substantial 
time and making programming more accessible to beginners. The 
widespread adoption of these assistants underscores their impor-
tance in the evolving landscape of software development [18]. 

Since developers are using AI assistants, if those assistants pro-
duce accessible code, then we might presume that the code that 
developers write would be more accessible. Yet, several aspects of 
the line of reasoning have been unclear. First, it is unclear whether 
AI coding assistants have been trained to produce accessible code. 
Indeed, most assistant are trained on publicly-available user inter-
face code that we know to contain substantial accessibility prob-
lems [9]. Second, it is unclear what developers need to know about 
accessibility to effectively use AI assistants to produce accessible 
code. For example, if developers have to explicitly instruct AI assis-
tants to generate accessible code (i.e., consider accessibility), the 
benefit would be limited to those who are already aware of acces-
sibility needs. We know that AI-assisted coding can still require 
substantial programming knowledge for effective usage, but the 
level of accessibility expertise required to benefit from any in-built 
accessibility capabilities in the assistants remains unclear. 

To investigate these issues, we designed and ran a study in which 
16 developers untrained in accessibility were tasked with building 
web user interface components with an AI coding assistant. Our 
results suggest that AI coding assistants can produce accessible 
code, but developers still need accessibility expertise to make use of 
them effectively. Otherwise, the accessibility introduced is likely to 
not be applied comprehensively, advanced features recommended 
by the assistant are unlikely to be implemented, and accessibility 
errors introduced by the assistant are unlikely to be caught. These 
results suggest that future work could usefully engage with how to 
make AI coding assistants better at producing accessible code and 
how to reduce the developer awareness and expertise required to 
benefit from the accessibility coding assistance. Our work provides a 
first step in understanding the limitations of the current approaches 
and some approaches for potentially overcoming them. 

2 RELATED WORK 
Work related to this paper includes (i) Web Accessibility (ii) Devel-
oper Practices in AI-Assisted Programming. 
Web Accessibility: Practice, Evaluation, and Improvements. 
Various efforts have been made to set accessibility standards [6, 11], 

establish legal requirements [33, 42], and promote education and 
advocacy among developers [22, 24, 35]. In the research domain, 
several methods have been developed to assess and enhance web 
accessibility. These include incorporating feedback into developer 
tools [4, 38, 39] and automating the creation of accessibility tests 
and reports for UIs [36, 37]. However, a persistent challenge is that 
developers need to be aware of these tools to utilize them effectively. 
With recent advancements in LLMs, developers might now build 
accessible UIs with less effort using AI assistants. However, the 
impact of these assistants on the accessibility of their generated 
code remains unclear. This study aims to investigate these effects. 
Developer Practices in AI-Assisted Programming. Recent usabil-
ity research on AI-assisted development has examined the interac-
tion strategies of developers while using AI Coding Assistants [3]. 
They observed developers interacted with these assistants in two 
modes – 1) acceleration mode: associated with shorter completions 
and 2) exploration mode: associated with long completions. [18] 
found that developers are driven to use AI assistants to reduce 
their keystrokes, finish tasks faster, and recall the syntax of pro-
gramming languages. On the other hand, developers’ reason for 
rejecting autocomplete suggestions was the need for more con-
sideration of appropriate software requirements. This is because 
primary research on code generation models has mainly focused 
on functional correctness while often sidelining non-functional 
requirements such as latency, maintainability, and security [34]. 
Consequently, there have been increasing concerns about the se-
curity implications of AI-generated code [31]. Similarly, this study 
focuses on the effectiveness and uptake of code suggestions among 
developers in mitigating accessibility-related vulnerabilities. 

3 METHODOLOGY 
To explore the impact of AI coding assistants on code accessibility, 
we conducted a user study with 16 web developers. This in-person 
study spanned about 90 minutes and received approval from the 
Institutional Review Board (IRB). Each participant received a $30 
Amazon gift card as reimbursement for their time. 
Participants. We recruited 16 participants who have web develop-
ment experience (7 female and 9 male; ages ranged from 22 to 29) 
via social media and university mailing groups. Nearly all our partic-
ipants were students and had multi-year programming experience 
(except one student who had around one year of experience). 10 of 
our participants had multi-year industrial programming experience 
(e.g., full-time or intern experiences in the company). 
Materials and Tasks. We selected two real-world websites, Ku-
bernetes [29] and BBC Simorgh [23], as our study materials. These 
websites receive over 2 million monthly visits worldwide [2], belong 
to different categories in the IAB Content Taxonomy [1], and differ 
in how accessible they are. To design our tasks, we sampled actual 
issues from each website’s repository on Github. One task involved 
a general feature request, while the other focused on enhancing 
the user interface for improved accessibility. Performing our tasks 
involved consideration of several common web accessibility issues 
(e.g., color contrast, alternative text, form labeling) [41]. 
Study Procedure. Participants were assigned tasks related to the 
two selected websites, with a total of four tasks to complete. To 
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Table 1: Manual Evaluation Criteria for Web Accessibility 

Task Category Evaluation Criteria 

Unacceptable: Missing or uninformative [27] alt-text 
Adding alt-text Needs Improvement: Added alt-text with < 3 required descriptors [19] 

Good: Added alt-text with >= 3 out of 4 required descriptors 

Unacceptable: contrast ratio of < 4.5:1 for normal text and < 3:1 for large text 
Button colour contrast Needs Improvement: WCAG level AA: minimum contrast ratio of 4.5:1 for normal and 3:1 for large text 

Good: WCAG level AAA: minimum contrast ratio of 7:1 for normal text and 4.5:1 for large text 

Unacceptable: Missing form labels and keyboard navigation 
Form labeling Needs Improvement: One of form labels and keyboard navigation 

Good: Both form labels and keyboard navigation 

Unacceptable: Missing or uninformative [30] link descriptions 
Link labeling Needs Improvement: Somewhat descriptive links [27] 

Good: Descriptive link labels 

replicate real-world scenarios where web developers often prior-
itize functional requirements over accessibility unless explicitly 
required [17], the study’s true purpose was not disclosed. Partici-
pants were informed that the study was about the usability of AI 
pair programmers in web development tasks but were not explicitly 
instructed to make their web components accessible. The study fol-
lowed a within-subject design. To counterbalance the order effect, 
participants were assigned to one of four orderings, covering all 
possible combinations of website order and Copilot usage. Partic-
ipants were also allowed access the web for task exploration or 
code documentation. After completing the tasks, they were asked 
to complete a post-task survey inquiring about their development 
expertise, experience in web accessibility, and open-ended feedback. 
Data Collection and Analysis. We captured the entire study ses-
sions through screen recordings, resulting in about 19 hours of 
video data. We complemented this with observational notes taken 
during the sessions, documenting verbal comments made by partic-
ipants. The participants’ interactions with Copilot Chat were also 
recorded for further analysis between prompts and the final code. 
We also collected AI usage, programming languages and frame-
work preferences, and expertise in web accessibility via a post-task 
survey. We manually inspected the websites created during the 
study and evaluated their accessibility on a qualitative scale of ‘Un-
acceptable’, ‘Needs Improvement’, and ‘Good’ adopted from prior 
research published in CHI and ASSETS, detailed further in Table 1. 

4 RESULTS 
We present the findings by showing participants’ previous experi-
ences and the overall accessibility of the revised code. 
Prior Experience with AI Coding Assistants and Accessible UI 
Development. From the post-task survey, we found that nearly all 
participants (except one) had previously used AI coding assistants, 
with GitHub Copilot and OpenAI ChatGPT being the most popular 
choices among 10 participants. Other assistants the participants had 
used were Tabnine (N = 6) and AWS CodeWhisperer (N = 2). As for 
web development skills, 12 participants had substantial experience 
with HTML and CSS, 10 were proficient in JavaScript and 7 were 
proficient in React.js. Despite this expertise, the majority (N = 14) 

were unfamiliar with the Web Content Accessibility Guidelines 
(WCAG). Only 2 participants knew about these guidelines, but 
even they had not actively engaged in creating accessible web user 
interfaces or received formal training on the subject. 
Impact of AI Assistants on Website Accessibility: Observa-
tions and Insights. The use of AI coding assistants has shown 
mixed results in resolving some common accessibility issues, as 
illustrated in Figure 2. Notably, Copilot can effectively generate 
accessible components by utilizing patterns from other parts of a 
website. For example, it might automatically include proper labels 
for form fields, such as <label for="email">Email:</label> 
in a signup form. However, the effectiveness of these tools can 
be limited by the need for more sophisticated accessibility knowl-
edge. Our study revealed that while developers generally rely on 
Copilot for syntax assistance and accelerated coding through its 
autocomplete features, their focus tends to be on productivity and 
efficiency rather than the accessibility of the output. This reliance 
sometimes leads to oversight of necessary accessibility consider-
ations. For instance, despite prompts from Copilot to manually 
adjust image descriptions as highlighted in Table 2, participants 
frequently overlooked these suggestions, resulting in code submis-
sions with empty alt attributes. Moreover, there were instances 
where Copilot inadvertently introduced new accessibility issues. 
For example, when adding new button components with hover 
effects, it failed to ensure adequate contrast between the button’s 
hover color and its background. Some errors, such as determining 
whether an image is decorative or informative (and if an image 
is informative, alt-texts should be added), cannot be detected by 
automated accessibility checkers, indicating certain limitations in 
current automated evaluations. These findings underscore the dual 
role of AI coding assistants: while they can generate some accessi-
ble code, they can also overlook or introduce accessibility issues 
when the focus is primarily on feature development. 

5 DISCUSSION 

Enhancing Language Models for Generating Accessible UI 
Code. Our research shows that current AI programming assistants 
produce user interface code at varying levels of accessibility. To 

https://React.js
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Table 2: The (partial) chat history revealed that directly copying Copilot’s suggestions would be incomplete, as developers 
overlooked the additional recommended steps. 

User: “User Query” 
Copilot: Generated Code 

Associated Text Explanation 

User 1: “I want to label the images or add relevant image descriptors” 
Copilot: alt=imgAlt // Add this line 

Remember to replace imageAlt, <...> with your actual image attributes. In this example, imageAlt is the alt text for the image, and <...>. You 
will need to replace these with the actual values. 

User 2: “Can you optimise the images on this article page for search engine optimization. Refactor the code accordingly by labeling the images or adding 
relevant image descriptions.” 

Copilot: imgAlt=imageDescription // Add this line 

Sure, to optimize images for SEO, you can add alt attributes to your img tags. The alt attribute provides alternative information for an image 
if a user for some reason cannot view it (because of slow connection, an error in the src attribute, or if the user uses a screen reader). 

Adding alt-text Button colour contrast Form labeling Link labeling 
Unacceptable (0) 

Needs Improvement (1) 

Good (2) 

0.5 
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1.75 
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Figure 2: Mean Accessibility Evaluation Scores by Tasks and Copilot Usage: Higher scores indicate that participants were 
successful. 

lower the barriers for novice developers in implementing accessible 
user interfaces, it’s crucial to improve the underlying models of 
these coding assistants. Recent developments in self-refinement 
techniques for language models [8, 15, 20] offer a pathway to en-
hance these models. By fine-tuning them with accessible user inter-
face examples gathered from extensive web crawling data [13, 16], 
along with employing a robust reward mechanism [10, 14] and ad-
ditional visual (and other modality) understanding modules [32, 40], 
we can align and steer these models to more effectively generate 
accessible user interface code (e.g., code with proper aria-labels; 
images with high-quality alt-texts). 
Building Programming Tools with Accessibility in Mind. Al-
though automatically generating accessible user interfacesthrough 
computational models can simplify the process for creators, a key 
aspect of making digital content accessible involves increasing cre-
ators’ awareness of accessibility from the start [25, 26, 38]. A model 
that produces accessible code can also provide feedback or guidance 
tool for humans in an AI-assisted co-programming environment. 
For example, instead of delivering fully accessible user interface 
code all at once, incorporating interactive elements with customiz-
able attributes into current programming tools could help users 
learn during the process. This may increase their awareness of 
accessibility issues and also help them address potential flaws or 

enable more personalization in AI-generated code (e.g., customizing 
the color contrast for buttons with hover effects). This feedback 
may also be applied in the opposite direction [7], enabling models 
to improve through ongoing interaction and input. 
Study Limitations. The primary limitation of our study is that our 
student participants were mostly recruited from the same univer-
sity and may not capture the full spectrum of developer experiences. 
Additionally, the brief duration of our study may not accurately rep-
resent long-term real-world interactions with AI Coding Assistants; 
extended study periods could potentially unveil more comprehen-
sive insights into users’ ongoing engagement and challenges. While 
our study provides important insights into the accessibility and 
awareness of AI Coding Assistants, caution should be exercised 
when extending these findings to the broader developer community. 

6 CONCLUSION 
In this paper, we have presented the results of a study of the effects 
of AI coding assistance on web accessibility. Our results suggest 
that AI coding assistants have potential to improve the accessibility 
of code that developers produce, but a remaining challenge is that 
developers still need to have expertise in accessibility to use these 
tools effectively. 
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