
Tab to Autocomplete:
The Effects of AI Coding Assistants on Web Accessibility

Peya Mowar
pmowar@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Yi-Hao Peng
yihaop@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Aaron Steinfeld
steinfeld@cmu.edu

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Jeffrey P. Bigham
jbigham@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Figure 1: Workflow of AI-assisted Web Development: Developers use AI coding assistants to produce UI code, which is rendered
as a web UI and accessed by users with different accessibility needs. We consider the accessibility of the rendered UI as a
function of the UI code produced and refer to it as “code accessibility”.

ABSTRACT
A long-standing challenge in accessible computing has been to get
developers to produce the accessible UI code necessary for assistive
technologies to work properly. AI coding assistants (e.g., Github
Copilot) potentially offer a new opportunity to make UI code more
accessible automatically, but it is unclear how their use impacts
code accessibility and what developers need to know in order to use
them effectively. In this paper, we report on a study where devel-
opers untrained in accessibility were tasked with building web UI
components with and without an AI coding assistant. Our findings

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASSETS ’24, October 27–30, 2024, St. John’s, NL, Canada
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0677-6/24/10
https://doi.org/10.1145/3663548.3688513

suggest that while current AI coding assistants show potential for
creating more accessible UIs, they currently require accessibility
awareness and expertise, limiting their expected impact.

CCS CONCEPTS
• Human-centered computing → Accessibility design and
evaluation methods; Interactive systems and tools; • Soft-
ware and its engineering → Development frameworks and
environments.

KEYWORDS
AI Coding Assistants, Web Accessibility, Empirical Studies in HCI
ACM Reference Format:
Peya Mowar, Yi-Hao Peng, Aaron Steinfeld, and Jeffrey P. Bigham. 2024. Tab

to Autocomplete: The Effects of AI Coding Assistants on Web Accessibility.
In The 26th International ACM SIGACCESS Conference on Computers and
Accessibility (ASSETS ’24), October 27–30, 2024, St. John’s, NL, Canada. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3663548.3688513

https://doi.org/10.1145/3663548.3688513
https://doi.org/10.1145/3663548.3688513
mailto:jbigham@cs.cmu.edu
mailto:yihaop@cs.cmu.edu
mailto:steinfeld@cmu.edu
mailto:pmowar@cs.cmu.edu

ASSETS ’24, October 27–30, 2024, St. John’s, NL, Canada Peya Mowar, Yi-Hao Peng, Aaron Steinfeld, and Jeffrey P. Bigham

1 INTRODUCTION
A long-standing challenge in accessible computing has been to get
developers to produce the accessible user interface code necessary
for assistive technologies to work properly. The 2024 WebAIM study
of the top million web pages found that the average homepage
had 56.8 errors, defined as “accessibility barriers having notable
end-user impact” [41], a number that has remained stubbornly
high despite the substantial effort put into accessibility standards
development [5, 6, 11, 28], developer tool integration [4, 21, 38],
legal requirements [33, 42], and developer advocacy [12, 35].

AI coding assistants, such as GitHub Copilot, represent a sig-
nificant breakthrough in programming. The rapid advancement of
language models has revolutionized the way individuals explore,
interpret, and edit code. By leveraging the power of large language
models (LLMs), the programming assistants provide code sugges-
tions and automate routine programming tasks, saving substantial
time and making programming more accessible to beginners. The
widespread adoption of these assistants underscores their impor-
tance in the evolving landscape of software development [18].

Since developers are using AI assistants, if those assistants pro-
duce accessible code, then we might presume that the code that
developers write would be more accessible. Yet, several aspects of
the line of reasoning have been unclear. First, it is unclear whether
AI coding assistants have been trained to produce accessible code.
Indeed, most assistant are trained on publicly-available user inter-
face code that we know to contain substantial accessibility prob-
lems [9]. Second, it is unclear what developers need to know about
accessibility to effectively use AI assistants to produce accessible
code. For example, if developers have to explicitly instruct AI assis-
tants to generate accessible code (i.e., consider accessibility), the
benefit would be limited to those who are already aware of acces-
sibility needs. We know that AI-assisted coding can still require
substantial programming knowledge for effective usage, but the
level of accessibility expertise required to benefit from any in-built
accessibility capabilities in the assistants remains unclear.

To investigate these issues, we designed and ran a study in which
16 developers untrained in accessibility were tasked with building
web user interface components with an AI coding assistant. Our
results suggest that AI coding assistants can produce accessible
code, but developers still need accessibility expertise to make use of
them effectively. Otherwise, the accessibility introduced is likely to
not be applied comprehensively, advanced features recommended
by the assistant are unlikely to be implemented, and accessibility
errors introduced by the assistant are unlikely to be caught. These
results suggest that future work could usefully engage with how to
make AI coding assistants better at producing accessible code and
how to reduce the developer awareness and expertise required to
benefit from the accessibility coding assistance. Our work provides a
first step in understanding the limitations of the current approaches
and some approaches for potentially overcoming them.

2 RELATED WORK
Work related to this paper includes (i) Web Accessibility (ii) Devel-
oper Practices in AI-Assisted Programming.
Web Accessibility: Practice, Evaluation, and Improvements.
Various efforts have been made to set accessibility standards [6, 11],

establish legal requirements [33, 42], and promote education and
advocacy among developers [22, 24, 35]. In the research domain,
several methods have been developed to assess and enhance web
accessibility. These include incorporating feedback into developer
tools [4, 38, 39] and automating the creation of accessibility tests
and reports for UIs [36, 37]. However, a persistent challenge is that
developers need to be aware of these tools to utilize them effectively.
With recent advancements in LLMs, developers might now build
accessible UIs with less effort using AI assistants. However, the
impact of these assistants on the accessibility of their generated
code remains unclear. This study aims to investigate these effects.
Developer Practices in AI-Assisted Programming. Recent usabil-
ity research on AI-assisted development has examined the interac-
tion strategies of developers while using AI Coding Assistants [3].
They observed developers interacted with these assistants in two
modes – 1) acceleration mode: associated with shorter completions
and 2) exploration mode: associated with long completions. [18]
found that developers are driven to use AI assistants to reduce
their keystrokes, finish tasks faster, and recall the syntax of pro-
gramming languages. On the other hand, developers’ reason for
rejecting autocomplete suggestions was the need for more con-
sideration of appropriate software requirements. This is because
primary research on code generation models has mainly focused
on functional correctness while often sidelining non-functional
requirements such as latency, maintainability, and security [34].
Consequently, there have been increasing concerns about the se-
curity implications of AI-generated code [31]. Similarly, this study
focuses on the effectiveness and uptake of code suggestions among
developers in mitigating accessibility-related vulnerabilities.

3 METHODOLOGY
To explore the impact of AI coding assistants on code accessibility,
we conducted a user study with 16 web developers. This in-person
study spanned about 90 minutes and received approval from the
Institutional Review Board (IRB). Each participant received a $30
Amazon gift card as reimbursement for their time.
Participants. We recruited 16 participants who have web develop-
ment experience (7 female and 9 male; ages ranged from 22 to 29)
via social media and university mailing groups. Nearly all our partic-
ipants were students and had multi-year programming experience
(except one student who had around one year of experience). 10 of
our participants had multi-year industrial programming experience
(e.g., full-time or intern experiences in the company).
Materials and Tasks. We selected two real-world websites, Ku-
bernetes [29] and BBC Simorgh [23], as our study materials. These
websites receive over 2 million monthly visits worldwide [2], belong
to different categories in the IAB Content Taxonomy [1], and differ
in how accessible they are. To design our tasks, we sampled actual
issues from each website’s repository on Github. One task involved
a general feature request, while the other focused on enhancing
the user interface for improved accessibility. Performing our tasks
involved consideration of several common web accessibility issues
(e.g., color contrast, alternative text, form labeling) [41].
Study Procedure. Participants were assigned tasks related to the
two selected websites, with a total of four tasks to complete. To

Tab to Autocomplete: The Effects of AI Coding Assistants on Web Accessibility ASSETS ’24, October 27–30, 2024, St. John’s, NL, Canada

Table 1: Manual Evaluation Criteria for Web Accessibility

Task Category Evaluation Criteria

Unacceptable: Missing or uninformative [27] alt-text
Adding alt-text Needs Improvement: Added alt-text with < 3 required descriptors [19]

Good: Added alt-text with >= 3 out of 4 required descriptors

Unacceptable: contrast ratio of < 4.5:1 for normal text and < 3:1 for large text
Button colour contrast Needs Improvement: WCAG level AA: minimum contrast ratio of 4.5:1 for normal and 3:1 for large text

Good: WCAG level AAA: minimum contrast ratio of 7:1 for normal text and 4.5:1 for large text

Unacceptable: Missing form labels and keyboard navigation
Form labeling Needs Improvement: One of form labels and keyboard navigation

Good: Both form labels and keyboard navigation

Unacceptable: Missing or uninformative [30] link descriptions
Link labeling Needs Improvement: Somewhat descriptive links [27]

Good: Descriptive link labels

replicate real-world scenarios where web developers often prior-
itize functional requirements over accessibility unless explicitly
required [17], the study’s true purpose was not disclosed. Partici-
pants were informed that the study was about the usability of AI
pair programmers in web development tasks but were not explicitly
instructed to make their web components accessible. The study fol-
lowed a within-subject design. To counterbalance the order effect,
participants were assigned to one of four orderings, covering all
possible combinations of website order and Copilot usage. Partic-
ipants were also allowed access the web for task exploration or
code documentation. After completing the tasks, they were asked
to complete a post-task survey inquiring about their development
expertise, experience in web accessibility, and open-ended feedback.
Data Collection and Analysis. We captured the entire study ses-
sions through screen recordings, resulting in about 19 hours of
video data. We complemented this with observational notes taken
during the sessions, documenting verbal comments made by partic-
ipants. The participants’ interactions with Copilot Chat were also
recorded for further analysis between prompts and the final code.
We also collected AI usage, programming languages and frame-
work preferences, and expertise in web accessibility via a post-task
survey. We manually inspected the websites created during the
study and evaluated their accessibility on a qualitative scale of ‘Un-
acceptable’, ‘Needs Improvement’, and ‘Good’ adopted from prior
research published in CHI and ASSETS, detailed further in Table 1.

4 RESULTS
We present the findings by showing participants’ previous experi-
ences and the overall accessibility of the revised code.
Prior Experience with AI Coding Assistants and Accessible UI
Development. From the post-task survey, we found that nearly all
participants (except one) had previously used AI coding assistants,
with GitHub Copilot and OpenAI ChatGPT being the most popular
choices among 10 participants. Other assistants the participants had
used were Tabnine (N = 6) and AWS CodeWhisperer (N = 2). As for
web development skills, 12 participants had substantial experience
with HTML and CSS, 10 were proficient in JavaScript and 7 were
proficient in React.js. Despite this expertise, the majority (N = 14)

were unfamiliar with the Web Content Accessibility Guidelines
(WCAG). Only 2 participants knew about these guidelines, but
even they had not actively engaged in creating accessible web user
interfaces or received formal training on the subject.
Impact of AI Assistants on Website Accessibility: Observa-
tions and Insights. The use of AI coding assistants has shown
mixed results in resolving some common accessibility issues, as
illustrated in Figure 2. Notably, Copilot can effectively generate
accessible components by utilizing patterns from other parts of a
website. For example, it might automatically include proper labels
for form fields, such as <label for="email">Email:</label>
in a signup form. However, the effectiveness of these tools can
be limited by the need for more sophisticated accessibility knowl-
edge. Our study revealed that while developers generally rely on
Copilot for syntax assistance and accelerated coding through its
autocomplete features, their focus tends to be on productivity and
efficiency rather than the accessibility of the output. This reliance
sometimes leads to oversight of necessary accessibility consider-
ations. For instance, despite prompts from Copilot to manually
adjust image descriptions as highlighted in Table 2, participants
frequently overlooked these suggestions, resulting in code submis-
sions with empty alt attributes. Moreover, there were instances
where Copilot inadvertently introduced new accessibility issues.
For example, when adding new button components with hover
effects, it failed to ensure adequate contrast between the button’s
hover color and its background. Some errors, such as determining
whether an image is decorative or informative (and if an image
is informative, alt-texts should be added), cannot be detected by
automated accessibility checkers, indicating certain limitations in
current automated evaluations. These findings underscore the dual
role of AI coding assistants: while they can generate some accessi-
ble code, they can also overlook or introduce accessibility issues
when the focus is primarily on feature development.

5 DISCUSSION

Enhancing Language Models for Generating Accessible UI
Code. Our research shows that current AI programming assistants
produce user interface code at varying levels of accessibility. To

https://React.js

ASSETS ’24, October 27–30, 2024, St. John’s, NL, Canada Peya Mowar, Yi-Hao Peng, Aaron Steinfeld, and Jeffrey P. Bigham

Table 2: The (partial) chat history revealed that directly copying Copilot’s suggestions would be incomplete, as developers
overlooked the additional recommended steps.

User: “User Query”
Copilot: Generated Code

Associated Text Explanation

User 1: “I want to label the images or add relevant image descriptors”
Copilot: alt=imgAlt // Add this line

Remember to replace imageAlt, <...> with your actual image attributes. In this example, imageAlt is the alt text for the image, and <...>. You
will need to replace these with the actual values.

User 2: “Can you optimise the images on this article page for search engine optimization. Refactor the code accordingly by labeling the images or adding
relevant image descriptions.”

Copilot: imgAlt=imageDescription // Add this line

Sure, to optimize images for SEO, you can add alt attributes to your img tags. The alt attribute provides alternative information for an image
if a user for some reason cannot view it (because of slow connection, an error in the src attribute, or if the user uses a screen reader).

Adding alt-text Button colour contrast Form labeling Link labeling
Unacceptable (0)

Needs Improvement (1)

Good (2)

0.5
0.63 0.63

1.75

0.25

0.63
0.88

1.75

Task Description

A
cc
es
si
bi
lit
y
Ev

al
ua
tio

n

Without Copilot With Copilot

Figure 2: Mean Accessibility Evaluation Scores by Tasks and Copilot Usage: Higher scores indicate that participants were
successful.

lower the barriers for novice developers in implementing accessible
user interfaces, it’s crucial to improve the underlying models of
these coding assistants. Recent developments in self-refinement
techniques for language models [8, 15, 20] offer a pathway to en-
hance these models. By fine-tuning them with accessible user inter-
face examples gathered from extensive web crawling data [13, 16],
along with employing a robust reward mechanism [10, 14] and ad-
ditional visual (and other modality) understanding modules [32, 40],
we can align and steer these models to more effectively generate
accessible user interface code (e.g., code with proper aria-labels;
images with high-quality alt-texts).
Building Programming Tools with Accessibility in Mind. Al-
though automatically generating accessible user interfacesthrough
computational models can simplify the process for creators, a key
aspect of making digital content accessible involves increasing cre-
ators’ awareness of accessibility from the start [25, 26, 38]. A model
that produces accessible code can also provide feedback or guidance
tool for humans in an AI-assisted co-programming environment.
For example, instead of delivering fully accessible user interface
code all at once, incorporating interactive elements with customiz-
able attributes into current programming tools could help users
learn during the process. This may increase their awareness of
accessibility issues and also help them address potential flaws or

enable more personalization in AI-generated code (e.g., customizing
the color contrast for buttons with hover effects). This feedback
may also be applied in the opposite direction [7], enabling models
to improve through ongoing interaction and input.
Study Limitations. The primary limitation of our study is that our
student participants were mostly recruited from the same univer-
sity and may not capture the full spectrum of developer experiences.
Additionally, the brief duration of our study may not accurately rep-
resent long-term real-world interactions with AI Coding Assistants;
extended study periods could potentially unveil more comprehen-
sive insights into users’ ongoing engagement and challenges. While
our study provides important insights into the accessibility and
awareness of AI Coding Assistants, caution should be exercised
when extending these findings to the broader developer community.

6 CONCLUSION
In this paper, we have presented the results of a study of the effects
of AI coding assistance on web accessibility. Our results suggest
that AI coding assistants have potential to improve the accessibility
of code that developers produce, but a remaining challenge is that
developers still need to have expertise in accessibility to use these
tools effectively.

Tab to Autocomplete: The Effects of AI Coding Assistants on Web Accessibility ASSETS ’24, October 27–30, 2024, St. John’s, NL, Canada

REFERENCES
[1] 2024. IAB Website Categories. https://docs.webshrinker.com/v3/iab-website-

categories.html#iab-categories. Accessed: 2024-04-22.
[2] 2024. SimilarWeb - Website Traffic & Market Intelligence. http://similarweb.com.

Accessed: 2024-04-22.
[3] Shraddha Barke, Michael B James, and Nadia Polikarpova. 2023. Grounded

copilot: How programmers interact with code-generating models. Proceedings of
the ACM on Programming Languages 7, OOPSLA1 (2023), 85–111.

[4] Jeffrey P Bigham, Jeremy T Brudvik, and Bernie Zhang. 2010. Accessibility
by demonstration: enabling end users to guide developers to web accessibility
solutions. In Proceedings of the 12th international ACM SIGACCESS conference on
Computers and accessibility. 35–42.

[5] Giorgio Brajnik, Yeliz Yesilada, and Simon Harper. 2010. Testability and validity
of WCAG 2.0: the expertise effect. In Proceedings of the 12th international ACM
SIGACCESS conference on Computers and accessibility. 43–50.

[6] Ben Caldwell, Michael Cooper, Loretta Guarino Reid, Gregg Vanderheiden, Wendy
Chisholm, John Slatin, and Jason White. 2008. Web content accessibility guide-
lines (WCAG) 2.0. WWW Consortium (W3C) 290, 1-34 (2008), 5–12.

[7] Sabrina Caldwell, Penny Sweetser, Nicholas O’Donnell, Matthew J Knight,
Matthew Aitchison, Tom Gedeon, Daniel Johnson, Margot Brereton, Marcus
Gallagher, and David Conroy. 2022. An agile new research framework for hybrid
human-AI teaming: Trust, transparency, and transferability. ACM Transactions
on Interactive Intelligent Systems (TiiS) 12, 3 (2022), 1–36.

[8] Angelica Chen, Jérémy Scheurer, Tomasz Korbak, Jon Ander Campos, Jun Shern
Chan, Samuel R Bowman, Kyunghyun Cho, and Ethan Perez. 2023. Improving
code generation by training with natural language feedback. arXiv preprint
arXiv:2303.16749 (2023).

[9] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

[10] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. 2023. Teaching
large language models to self-debug. arXiv preprint arXiv:2304.05128 (2023).

[11] Wendy Chisholm, Gregg Vanderheiden, and Ian Jacobs. 2001. Web content
accessibility guidelines 1.0. Interactions 8, 4 (2001), 35–54.

[12] Martyn Cooper, David Sloan, Brian Kelly, and Sarah Lewthwaite. 2012. A chal-
lenge to web accessibility metrics and guidelines: putting people and processes
first. In Proceedings of the international cross-disciplinary conference on Web acces-
sibility. 1–4.

[13] Jesse Dodge, Maarten Sap, Ana Marasović, William Agnew, Gabriel Ilharco, Dirk
Groeneveld, Margaret Mitchell, and Matt Gardner. 2021. Documenting large
webtext corpora: A case study on the colossal clean crawled corpus. arXiv preprint
arXiv:2104.08758 (2021).

[14] Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte
Weerts, Abhishek Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie
Gu, et al. 2023. Reinforced self-training (rest) for language modeling. arXiv
preprint arXiv:2308.08998 (2023).

[15] Geunwoo Kim, Pierre Baldi, and Stephen McAleer. 2024. Language models can
solve computer tasks. Advances in Neural Information Processing Systems 36
(2024).

[16] Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet
Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M.
Rush, Douwe Kiela, Matthieu Cord, and Victor Sanh. 2023. OBELICS:
An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents.
arXiv:2306.16527 [cs.IR]

[17] Jonathan Lazar, Alfreda Dudley-Sponaugle, and Kisha-Dawn Greenidge. 2004.
Improving web accessibility: a study of webmaster perceptions. Computers in
human behavior 20, 2 (2004), 269–288.

[18] Jenny T Liang, Chenyang Yang, and Brad A Myers. 2024. A large-scale survey
on the usability of ai programming assistants: Successes and challenges. In
Proceedings of the 46th IEEE/ACM International Conference on Software Engineering.
1–13.

[19] Kelly Mack, Edward Cutrell, Bongshin Lee, and Meredith Ringel Morris. 2021.
Designing Tools for High-Quality Alt Text Authoring. In Proceedings of the
23rd International ACM SIGACCESS Conference on Computers and Accessibility
(<conf-loc>, <city>Virtual Event</city>, <country>USA</country>, </conf-loc>)
(ASSETS ’21). Association for Computing Machinery, New York, NY, USA, Article
23, 14 pages. https://doi.org/10.1145/3441852.3471207

[20] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah
Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al.
2024. Self-refine: Iterative refinement with self-feedback. Advances in Neural
Information Processing Systems 36 (2024).

[21] Jennifer Mankoff, Holly Fait, and Tu Tran. 2005. Is your web page accessible? A
comparative study of methods for assessing web page accessibility for the blind.
In Proceedings of the SIGCHI conference on Human factors in computing systems.
41–50.

[22] Lilu Martin, Catherine Baker, Kristen Shinohara, and Yasmine N Elglaly. 2022.
The Landscape of Accessibility Skill Set in the Software Industry Positions. In
Proceedings of the 24th International ACM SIGACCESS Conference on Computers
and Accessibility. 1–4.

[23] BBC News. 2024. BBC Home - Breaking News, World News, US News, Sports ...
https://www.bbc.com/

[24] Maulishree Pandey and Tao Dong. 2023. Blending Accessibility in UI Framework
Documentation to Build Awareness. In Proceedings of the 25th International ACM
SIGACCESS Conference on Computers and Accessibility. 1–12.

[25] Amy Pavel, Gabriel Reyes, and Jeffrey P Bigham. 2020. Rescribe: Authoring and
automatically editing audio descriptions. In Proceedings of the 33rd Annual ACM
Symposium on User Interface Software and Technology. 747–759.

[26] Yi-Hao Peng, JiWoong Jang, Jeffrey P Bigham, and Amy Pavel. 2021. Say it all:
Feedback for improving non-visual presentation accessibility. In Proceedings of
the 2021 CHI Conference on Human Factors in Computing Systems. 1–12.

[27] Athira Pillai, Kristen Shinohara, and Garreth W Tigwell. 2022. Website builders
still contribute to inaccessible web design. In Proceedings of the 24th International
ACM SIGACCESS Conference on Computers and Accessibility. 1–4.

[28] Christopher Power, André Freire, Helen Petrie, and David Swallow. 2012. Guide-
lines are only half of the story: accessibility problems encountered by blind users
on the web. In Proceedings of the SIGCHI conference on human factors in computing
systems. 433–442.

[29] Kubernetes Project. 2024. Kubernetes. https://kubernetes.io/
[30] Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob O Wobbrock. 2018.

Examining image-based button labeling for accessibility in Android apps through
large-scale analysis. In Proceedings of the 20th International ACM SIGACCESS
Conference on Computers and Accessibility. 119–130.

[31] Gustavo Sandoval, Hammond Pearce, Teo Nys, Ramesh Karri, Siddharth Garg, and
Brendan Dolan-Gavitt. 2023. Lost at c: A user study on the security implications
of large language model code assistants. arXiv preprint arXiv:2208.09727 (2023).

[32] Pratyusha Sharma, Tamar Rott Shaham, Manel Baradad, Stephanie Fu, Adrian
Rodriguez-Munoz, Shivam Duggal, Phillip Isola, and Antonio Torralba. 2024. A
Vision Check-up for Language Models. arXiv preprint arXiv:2401.01862 (2024).

[33] Brian Sierkowski. 2002. Achieving web accessibility. In Proceedings of the 30th
annual ACM SIGUCCS conference on User services. 288–291.

[34] Manav Singhal, Tushar Aggarwal, Abhijeet Awasthi, Nagarajan Natarajan, and
Aditya Kanade. 2024. NoFunEval: Funny How Code LMs Falter on Requirements
Beyond Functional Correctness. arXiv preprint arXiv:2401.15963 (2024).

[35] David Sloan, Andy Heath, Fraser Hamilton, Brian Kelly, Helen Petrie, and Lawrie
Phipps. 2006. Contextual web accessibility-maximizing the benefit of accessibility
guidelines. In Proceedings of the 2006 international cross-disciplinary workshop
on Web accessibility (W4A): Building the mobile web: rediscovering accessibility?
121–131.

[36] Amanda Swearngin, Jason Wu, Xiaoyi Zhang, Esteban Gomez, Jen Coughenour,
Rachel Stukenborg, Bhavya Garg, Greg Hughes, Adriana Hilliard, Jeffrey P
Bigham, et al. 2023. Towards Automated Accessibility Report Generation for
Mobile Apps. arXiv preprint arXiv:2310.00091 (2023).

[37] Maryam Taeb, Amanda Swearngin, Eldon School, Ruijia Cheng, Yue Jiang, and
Jeffrey Nichols. 2023. Axnav: Replaying accessibility tests from natural language.
arXiv preprint arXiv:2310.02424 (2023).

[38] Hironobu Takagi, Chieko Asakawa, Kentarou Fukuda, and Junji Maeda. 2003.
Accessibility designer: visualizing usability for the blind. ACM SIGACCESS
accessibility and computing 77-78 (2003), 177–184.

[39] Hironobu Takagi, Chieko Asakawa, Kentarou Fukuda, and Junji Maeda. 2003.
Accessibility designer: visualizing usability for the blind. SIGACCESS Access.
Comput. 77–78 (sep 2003), 177–184. https://doi.org/10.1145/1029014.1028662

[40] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2016. Show
and tell: Lessons learned from the 2015 mscoco image captioning challenge. IEEE
transactions on pattern analysis and machine intelligence 39, 4 (2016), 652–663.

[41] WebAIM. 2024. The WebAIM Million - The 2024 report on the accessibility of
the top 1,000,000 home pages. https://webaim.org/projects/million/. Accessed:
2024-04-22.

[42] Yeliz Yesilada, Giorgio Brajnik, Markel Vigo, and Simon Harper. 2012. Under-
standing web accessibility and its drivers. In Proceedings of the international
cross-disciplinary conference on web accessibility. 1–9.

https://docs.webshrinker.com/v3/iab-website-categories.html#iab-categories
https://docs.webshrinker.com/v3/iab-website-categories.html#iab-categories
http://similarweb.com
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2306.16527
https://doi.org/10.1145/3441852.3471207
https://www.bbc.com/
https://kubernetes.io/
https://doi.org/10.1145/1029014.1028662
https://webaim.org/projects/million/

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	4 Results
	5 Discussion
	6 Conclusion
	References

