Accessibility in Al-Assisted Web Development

Peya Mowar
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA
pmowar@andrew.cmu.edu

ABSTRACT

Despite extensive accessibility research, inaccessible websites re-
main stubbornly prevalent, partly due to limited accessibility aware-
ness among web developers. The advent of code generation models
presents an opportunity to guide accessibility-unaware developers
toward enhanced accessibility practices. Our work examines the cur-
rent state of accessibility in Al-assisted web development. Empirical
evidence reveals code generation models serve as a double-edged
sword, prompting a discussion on future research directions.

KEYWORDS

Web Accessibility, Web Content Accessibility Guidelines, Human-
Al Interaction, Code Generation

ACM Reference Format:

Peya Mowar. 2024. Accessibility in Al-Assisted Web Development. In The
21st International Web for All Conference (W4A 24), May 13-14, 2024, Singa-
pore, Singapore. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3677846.3679054

1 INTRODUCTION

The web is indispensable for critical daily activities such as educa-
tion, entertainment, and social interaction. Thus, there is active re-
search and extensive prior work on web accessibility [4, 6, 14, 18, 22].
Despite these efforts, the actual progress has been minimal. Even to-
day, most web pages do not comply with the accessibility standards
outlined by the Web Content Accessibility Guidelines 2.0 (WCAG
2) [3]. Among the 1 million web pages evaluated by WebAim [7],
a staggering 96.3% contained WCAG 2 failures, such as missing
alternative text for images, unlabelled buttons, and low contrast
text. Over the past four years, this value has only dropped by 1.5%.

Prior work has attributed this slow pace to a lack of awareness
among industrial technology professionals and scarcity of resources
for translating guidelines to practical code implementation [8, 11].
Patel et al. [12] suggested research into integrated development
environment (IDE) plugins, to assist developers in addressing ac-
cessibility issues. Code generation models, already available as
IDE plugins as illustrated in Figure 1, might have the potential
to provide this assistance. Their usage offers the opportunity to
evaluate their effectiveness in guiding developers toward improved
accessibility practices. Conversely, there is a pressing need to study

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

WHA 24, May 13-14, 2024, Singapore, Singapore

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1030-8/24/05.

https://doi.org/10.1145/3677846.3679054

whether the increasing prevalence of these models introduces new
accessibility-related vulnerabilities.

adient(to right, var(—black-2), var(—black-1));

=3

color: var(—white); // Add this Line to fix nissing contrast

Figure 1: GitHub Copilot Plugin for Visual Studio Code

Thus, my thesis work aims to examine the current state of ac-
cessibility in Al-assisted web development. Specifically, it seeks to
investigate the following broad research question: “How does the
accessibility of websites developed by industrial web developers (or
proxies) with the assistance of code generative models compare to those
developed without such assistance?” This research will shed light on
the effectiveness of Al developer tools in supporting web develop-
ers to adhere to current accessibility standards. Further, it will have
broader implications on the evolution of developer practices with
Al assistance and mitigation strategies to improve benchmarks of
code language models on non-functional code requirements (such
as accessibility, security, latency) [19].

2 RELATED WORK

This work draws and builds upon previous research on developer
accessibility practices and the usability of Al-assisted development.

Developer Accessibility Practices. Prior studies have explored de-
velopers’ perceptions of accessibility, revealing a shared empathy
for accessibility considerations among all developers [16]. Still, ac-
cessibility is an afterthought in coding practices due to several
factors. These include a lack of emphasis on accessibility in educa-
tional and industry standards [5, 10], the complexity of accessibility
guidelines [8], and the perceived additional time, effort, and cost
required for implementation [1]. Researchers have advocated for
a “blended approach” [11], which treats accessibility as an integral
non-functional requirement, akin to security and privacy, in U/UX
documentation. They have also suggested building appropriate IDE
tooling for developers to assist them in catching and remediating
accessibility violations [12].

Usability of Al-assisted Development. Recent usability research on
Al-assisted development has examined the effectiveness and uptake
of code suggestions among developers [9]. Findings indicate that de-
velopers did not frequently accept these suggestions as they did not
appropriately consider the software requirements. This is because
primary research on code generation models has mainly focused
on functional correctness while often sidelining non-functional


https://doi.org/10.1145/3677846.3679054
https://doi.org/10.1145/3677846.3679054
https://doi.org/10.1145/3677846.3679054

W4A °24, May 13-14, 2024, Singapore, Singapore

requirements such as latency, maintainability, and security [19].
Consequently, there have been increasing concerns about the secu-
rity implications of Al-generated code [17]. Such code, trained on
vast datasets of human-written buggy code [13], is prone to con-
tain code smells [15] and potentially introduce vulnerabilities [2].
Future research should focus on vulnerability mitigation strategies
for better usability of these agents and improved efficiencies in
Al-assisted development.

3 EMPIRICAL STUDY SETUP

In this study, we focus specifically on the empirical evaluation of
GitHub Copilot as an extension in a natural software development
environment, i.e., Visual Studio Code. Copilot is an Al developer
tool by GitHub, trained on publicly available code from GitHub
repositories, that generates contextually relevant code suggestions.
We conduct a comparative analysis by reviewing GitHub Copilot’s
code suggestions against the developer’s source code for active
websites in real-world web development scenarios. For this study,
we assume that the code committed by the developer on GitHub
lacks any Al assistance and hence serves as our ground truth. We
follow the steps below to assess GitHub Copilot’s code suggestions.

Step 1: Task Selection. We select six actively updated websites that
span various categories defined by the IAB Content Taxonomy [21],
such as business, education, and entertainment, etc., open-sourced
on GitHub. These sites exhibit varying levels of adherence to the
Web Content Accessibility Guidelines (WCAG) 2.0 standards. Our
selection of web development tasks focuses on the recently resolved
“UI enhancement” issues on these websites, specifically choosing
those with the potential for at least one of the six most frequently
occurring WCAG 2 failures [7] and requiring modifications to a
single file.

Step 2: Prompt Definition. First, we revert the source code to the
commit just before the developer addressed the issue. Then, we
prompt GitHub Copilot with the functional requirements by provid-
ing the issue description and relevant file paths as comments. We
ensure that no other file is opened as an additional context window,
and prompt precisely at the exact location in the same file where the
original edits were made. We keep accepting Copilot’s suggestions
until no further recommendations are provided. In instances where
the developer had modified existing lines of code, we select those
code lines and utilize the Copilot Chat feature for prompting. This
setup aims to mirror the developer’s interaction with Copilot as
closely as possible.

Step 3: Code Evaluation. The final step involves comparing the
developer source code with the suggestions applied from Copilot.
We limit our evaluation of WCAG failures to the modifications
highlighted in the code difference file, disregarding errors outside
these bounds. Through qualitative analysis, we ascertain whether
Copilot’s interventions mitigate existing accessibility barriers or
inadvertently introduce new ones.

4 PRELIMINARY RESULTS

Opportunities. Copilot frequently generated placeholder attributes
to enhance accessibility, such as consistently appending an alt

Mowar

attribute to the img tag, thereby encouraging developers to pro-
vide alternative text for images. However, these placeholders often
lacked content; when populated, the provided text was usually not
pertinent. Therefore, a future direction for my thesis would be to
explore the adoption of such nudges among developers. Moreover,
Copilot demonstrated capability in addressing specific accessibil-
ity requirements, mainly when directly prompted or when these
requirements coincided with functional requirements. An example
includes the task of enhancing button contrast against the web-
site background. Copilot effectively identified and remedied the
contrast issues, although it did not strictly adhere to the WCAG-
recommended contrast ratios. This indicates Copilot’s potential to
improve web accessibility, albeit with limitations such as requiring
explicit instruction.

Challenges. Copilot’s output heavily depended on the existing ac-
cessibility of a website: it produced inaccessible elements for web-
sites already lacking in accessibility and tried to mimic accessible
design patterns in more compliant websites, though not always
successfully. Similarly, human developers, also contextual learners,
recognized and incorporated accessibility as a crucial aspect of
design when they encountered accessible websites, striving to cre-
ate accessible elements themselves. However, based on our limited
dataset, Copilot has not yet been able to exceed the accessibility
standards set by professional developers. Further, we additionally
noticed instances where Copilot hallucinated inaccessible elements,
unrelated to the functional requirements, extrapolated from irrel-
evant contexts. For example, Copilot added unlabelled YouTube
video links for research papers in a research portfolio, which were
never provided as assets. Thus, another thread in my thesis will
explore these vulnerabilities and developers’ reactions to them in
more detail.

5 FUTURE WORK AND CONCLUSION

As discussed above, the initial efforts in this research were concen-
trated on a qualitative accessibility evaluation of code generation
models on web development tasks. As the next step, we plan to
conduct a comprehensive task-based study with industrial web de-
velopers or proxies such as CS students or freelance developers [20].
This study will assess how these developers leverage Copilot in
web development tasks, focusing on code compliance with WCAG
2 guidelines. Recognizing that both humans and Copilot learn con-
textually, we will also explore the effects of task sequencing on
accessible versus inaccessible websites, aiming to understand if and
how developers and Copilot can mutually enhance their learning
and application of accessibility standards. Additionally, we intend
to automate the evaluation process and identify quantitative acces-
sibility metrics that accurately reflect the nuances of Al-assisted
web development.

6 ACKNOWLEDGEMENTS

I would like to thank my advisors, Prof. Jeffrey Bigham and Prof.
Aaron Steinfeld, for their invaluable guidance and support. I am
also grateful to the Carnegie Mellon University (CMU) Accessibility
Group. This work is approved by IRB #2024-030 and supported by
the CMU School of Computer Science.



Accessibility in Al-Assisted Web Development

REFERENCES

(1]

&

(]

[10]

[11

[12]

[13]

[14

[15

[16

[17

(18]

[19

[20]

[21

[22]

Humberto Lidio Antonelli, Sandra Souza Rodrigues, Willian Massami Watanabe,
and Renata Pontin de Mattos Fortes. 2018. A survey on accessibility awareness
of Brazilian web developers. In Proceedings of the 8th international conference
on software development and technologies for enhancing accessibility and fighting
info-exclusion. 71-79.

Owura Asare, Meiyappan Nagappan, and N Asokan. 2023. Is github’s copilot
as bad as humans at introducing vulnerabilities in code? Empirical Software
Engineering 28, 6 (2023), 129.

Ben Caldwell, Michael Cooper, Loretta Guarino Reid, Gregg Vanderheiden, Wendy
Chisholm, John Slatin, and Jason White. 2008. Web content accessibility guide-
lines (WCAG) 2.0. WWW Consortium (W3C) 290 (2008), 1-34.

Paul T Chiou, Ali S Alotaibi, and William GJ Halfond. 2023. BAGEL: An Ap-
proach to Automatically Detect Navigation-Based Web Accessibility Barriers for
Keyboard Users. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems. 1-17.

Michael Crabb, Michael Heron, Rhianne Jones, Mike Armstrong, Hayley Reid,
and Amy Wilson. 2019. Developing accessible services: Understanding current
knowledge and areas for future support. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems. 1-12.

Reinaldo Ferraz, Ana Duarte, Jodo Barbara, Adriano C.M. Pereira, and Wagner
Meira. 2023. A platform to check website compliance with web accessibility
standards. In Proceedings of the 20th International Web for All Conference (<conf-
loc>, <city>Austin</city>, <state>TX</state>, <country>USA</country>, </conf-
loc>) (W4A °23). Association for Computing Machinery, New York, NY, USA,
75-78. https://doi.org/10.1145/3587281.3587289

Policy Practice Institute for Disability Research. 2024. The WebAIM Million.
Retrieved February 20, 2024 from https://webaim.org/projects/million/
Jonathan Lazar, Alfreda Dudley-Sponaugle, and Kisha-Dawn Greenidge. 2004.
Improving web accessibility: a study of webmaster perceptions. Computers in
human behavior 20, 2 (2004), 269-288.

Jenny T Liang, Chenyang Yang, and Brad A Myers. 2024. A large-scale survey
on the usability of ai programming assistants: Successes and challenges. In
Proceedings of the 46th IEEE/ACM International Conference on Software Engineering.
1-13.

Lilu Martin, Catherine Baker, Kristen Shinohara, and Yasmine N Elglaly. 2022.
The Landscape of Accessibility Skill Set in the Software Industry Positions. In
Proceedings of the 24th International ACM SIGACCESS Conference on Computers
and Accessibility. 1-4.

Maulishree Pandey and Tao Dong. 2023. Blending Accessibility in UI Framework
Documentation to Build Awareness. In Proceedings of the 25th International ACM
SIGACCESS Conference on Computers and Accessibility. 1-12.

Rohan Patel, Pedro Breton, Catherine M Baker, Yasmine N El-Glaly, and Kristen
Shinohara. 2020. Why software is not accessible: Technology professionals’
perspectives and challenges. In Extended abstracts of the 2020 CHI conference on
human factors in computing systems. 1-9.

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and
Ramesh Karri. 2022. Asleep at the keyboard? assessing the security of github
copilot’s code contributions. In 2022 IEEE Symposium on Security and Privacy
(SP). IEEE, 754-768.

Helen Petrie, Andreas Savva, and Christopher Power. 2015. Towards a unified
definition of web accessibility. In Proceedings of the 12th International Web for All
Conference. 1-13.

Rohith Pudari and Neil A Ernst. 2023. From Copilot to Pilot: Towards Al Supported
Software Development. arXiv preprint arXiv:2303.04142 (2023).

Cynthia Putnam, Kathryn Wozniak, Mary Jo Zefeldt, Jinghui Cheng, Morgan
Caputo, and Carl Duffield. 2012. How do professionals who create computing
technologies consider accessibility?. In Proceedings of the 14th international ACM
SIGACCESS conference on Computers and accessibility. 87-94.

Gustavo Sandoval, Hammond Pearce, Teo Nys, Ramesh Karri, Siddharth Garg, and
Brendan Dolan-Gavitt. 2023. Lost at c: A user study on the security implications
of large language model code assistants. arXiv preprint arXiv:2208.09727 (2023).
Brian Sierkowski. 2002. Achieving web accessibility. In Proceedings of the 30th
annual ACM SIGUCCS conference on User services. 288-291.

Manav Singhal, Tushar Aggarwal, Abhijeet Awasthi, Nagarajan Natarajan, and
Aditya Kanade. 2024. NoFunEval: Funny How Code LMs Falter on Requirements
Beyond Functional Correctness. arXiv preprint arXiv:2401.15963 (2024).
Mohammad Tahaei and Kami Vaniea. 2022. Recruiting Participants With Pro-
gramming Skills: A Comparison of Four Crowdsourcing Platforms and a CS
Student Mailing List. In Proceedings of the 2022 CHI Conference on Human
Factors in Computing Systems (, New Orleans, LA, USA,) (CHI °22). Associ-
ation for Computing Machinery, New York, NY, USA, Article 590, 15 pages.
https://doi.org/10.1145/3491102.3501957

Webshrinker. 2024. IAB Categories. Retrieved February 20, 2024 from https:
//docs.webshrinker.com/v3/iab-website- categories.html#iab- categories

Yeliz Yesilada, Giorgio Brajnik, Markel Vigo, and Simon Harper. 2012. Under-
standing web accessibility and its drivers. In Proceedings of the international

W4A °24, May 13-14, 2024, Singapore, Singapore

cross-disciplinary conference on web accessibility. 1-9.


https://doi.org/10.1145/3587281.3587289
https://webaim.org/projects/million/
https://doi.org/10.1145/3491102.3501957
https://docs.webshrinker.com/v3/iab-website-categories.html#iab-categories
https://docs.webshrinker.com/v3/iab-website-categories.html#iab-categories

	Abstract
	1 Introduction
	2 Related Work
	3 Empirical Study Setup
	4 Preliminary Results
	5 Future Work and Conclusion
	6 Acknowledgements
	References

